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Introduction 

 

The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information 

and tools to fire managers that enhance their ability to assess potential ecological effects of 

wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential 

Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that 

quantifies the potential for wildland fires to burn with higher severity should they occur (Dillon 

et al 2011a). We developed this map using empirical observations and statistical models to relate 

biophysical conditions at the time and location of a fire to the resulting severity. For our 

purposes, burn severity refers to the degree to which aboveground biomass has been altered as 

expressed in the change between pre- and post-fire satellite imagery (Lentile et al 2006). Our aim 

in creating the SFPM is to explore the relationships between site characteristics and burn severity 

(Dillon et al 2011b) and to provide land managers with a tool that can forecast the potential 

severity of future fires.  
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Methodology 

 

Building on the work of Holden et al 2009, we developed a set of statistical models, each relating 

a suite of independent geospatial variables to 30 years of burn severity data developed by the 

Monitoring Trends in Burn Severity (MTBS) project. MTBS is an ongoing project to map the 

severity of all large fires that have occurred since 1984 (Eidenshink et al 2007). We partitioned 

continuous measures of burn severity into a binary dataset of ‘higher severity’ vs. ‘lower 

severity’. We produced models to determine the relationship between the two severity classes 

and site characteristics such as pre-fire vegetation, temporally-specific 1000-hour fuel moistures 

and a suite of topographic variables. We developed these models separately for forest and 

woodland vs. non-forest settings in each of 25 distinct ecological regions. The resultant statistical 

models are used to estimate, based on current measures of our predictor variables, the probability 

that fire at a particular point on the landscape will result in higher burn severity, should that 

location burn. These results were used to create a digital map depicting severe fire potential for 

every 30-meter pixel across CONUS. 

 

Study Area(s) 

Our study area consisted of the entirety of CONUS but we completed the project in two phases, 

the west in 2012 and the east in 2016. Because fire behaves differently under disparate 

biophysical and climatic conditions it was necessary to divide 

our study area up into smaller subsets based on modified US 

EPA ecoregions (Omernik 1987) with some consolidation (Fig. 

1). In addition, burn severity measurement and interpretation are 

different in forest and woodland vs. non-forest settings. 

Therefore, we further divided each mapping region into these 

two broad vegetation cover types. We used the mapping regions 

and cover types to stratify statistical modeling. This resulted in 

50 predictive models (25 regions x 2 cover types).  

 

Data acquisition 

We obtained burn severity data for over 12,000 fires that occurred between 1984 and 2013 from 

MTBS (http://www.mtbs.gov/index.html). We divided the 

continuous measures of burn severity from MTBS into ‘severe’ 

vs. ‘not severe’ categories. Due to differences in the quantity and 

distribution of burn severity data, modeling methodologies 

differed slightly between the east and the west. One of these 

differences is the definition of a ‘severe’ fire. For the west, where 

high-severity fire is more commonplace, we divided the burned 

pixels into ‘high’ vs. ‘low to moderate’ severity categories. In the 

east, we divided burned pixels into ‘moderate to high’ vs. ‘low’ 

severity. Our methodologies for creating categorical definitions 

of low, moderate and high severity are comparable, but not identical, to those used by MTBS.  

 

For our site characteristic data, we acquired 30-meter Digital Elevation Models (DEMs) from the 

National Elevation Dataset (NED; http://ned.usgs.gov/) and used them to create a suite of 

Figure 1: Mapping regions 

Figure 2: MTBS fires 

http://ned.usgs.gov/
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topographic indices. We also used the DEMs to model solar radiation, which reflects the 

influence of topography on vegetation. To represent pre-fire vegetation conditions in the west, 

we used the Normalized Difference Vegetation Index (NDVI), which we derived from pre-fire 

Landsat imagery acquired from MTBS. In the east, we obtained moderate-resolution imaging 

spectroradiometer (MODIS) NDVI data from the United States Geological Service (USGS; 

https://lpdaac.usgs.gov/). As a measure of seasonal drought, we used 1000-hour fuel moistures at 

the time of each fire in our dataset. Fuel moisture data were derived using 4km resolution 

downscaled North American Regional Reanalysis (NARR) data (Abatzoglou 2013). A total of 17 

variables were developed as predictive inputs. 

 

Modeling 

Once we had acquired and processed the input data, we generated a spatially-balanced, random 

sample representing 1% of all burned pixels. We used the ~ two million sample point locations 

to extract values for all of our predictor variables. 

 

We used the Random Forest machine-learning algorithm (Breiman 2001) to develop our 

statistical models. Random Forest is an extension of classification and regression tree modeling 

techniques. It divides inputs into training and testing datasets and uses the training data to create 

models and the testing data to validate the accuracy of its models. Random Forest also has the 

ability to rank how important each input variable is in terms of its predictive power. We used 

Random Forest modeling with 1500 classification trees and selected the optimal model with the 

lowest classification error. This resulted in 50 separate Random Forest models, one each for 

forest and woodland and non-forest cover types in each of our 25 mapping regions. 

 

Results 

 

Our Random Forest modeling results showed a strong relationship between site characteristics 

and the resultant burn severity. In forest and woodland cover types cross-validated classification 

accuracies ranged from 65 to 87% with a median of 73% (Fig. 3). In the non-forested areas, 

classification accuracies ranged from 69 to 85% with a median of 76% (Fig. 4). The number of 

Figure 3: Classification accuracies – Forest & Woodlands Figure 4: Classification accuracies - Non-Forest 

https://lpdaac.usgs.gov/
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predictor variables selected in the optimal Random Forest models ranged from four to ten in the 

forest and woodlands models and four to nine in the non-forest models with medians of six and 

seven respectively. In terms of variable importance rankings, elevation, 1000-hr fuel moisture 

and NDVI were generally in the top four predictor variables, often with some combination of 

solar radiation, slope and broad-scale topographic position. 

 

Mapping 

 

Using the Random Forest models created in the modeling process, we predicted potential burn 

severity using contemporary landscapes with spatially-comprehensive and temporally-

representative predictor variables. Topographic 

variables are static but vegetation and 1000-hour fuel 

moistures are not. We used recent NDVI vegetation 

data and constant 1000-hour fuel moisture values at a 

variety of common fire weather thresholds (80th, 90th 

and 97th percentiles). Constant fuel moisture values 

are necessary because it is not possible to know them 

in advance. Each of the 1500 classification trees in 

the Random Forest models classify every 30-meter 

pixel on the landscape into either the severe or not 

severe categories resulting in 1500 predictions of 

binary severity. The product of this analysis is a map 

showing the percentage of classification trees that 

predicted severe fire. Figures 5 and 6 show the results 

of these predictions at the 90th percentile 1000-hour 

fuel moisture level for the west and the east 

respectively. In the west, we are forecasting the 

potential for high severity fire and in the east the 

potential for moderate to high severity fire. 

 

 

Discussion 

 

When coupled with information regarding current 

landscape conditions, the Severe Fire Potential Map 

can assist managers in identifying areas where fire 

may help restore fire-adapted ecosystems and where 

it might have less favorable impacts. Its potential 

uses include: 

 

 Planning for future wildfires - pre-existing 

product can inform managers as to whether 

an ignition may lead to desirable or 

undesirable ecological impacts. 

Figure 5: Western burn severity potential 

Figure 6: Eastern burn severity potential 
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 Planning prescribed burns – informs potential ecological consequences of prescribed fire. 

 Fuel treatment planning – helps managers focus on areas where fire may burn with an 

undesirable severity. 

 Immediate post-fire rehabilitation – identifying those areas most likely to need mitigation 

treatments (e.g. soil stabilization) before traditional post-fire burn severity products (e.g. 

BAER and RAVG) are available. 

 

The completed SFPM is currently available online at http://www.frames.gov/firesev for the 

western US and at http://www.frames.gov/firesev/east for the eastern US. This map product will 

be incorporated into existing decision support frameworks such as the Wildland Fire Decision 

Support System (WFDSS) in the near future. A General Technical Report (GTR) describing the 

methods, map products and validation metrics is also forthcoming. The development of the 

Severe Fire Potential Map has provided an opportunity to enhance our understanding of the 

environmental influences on burn severity and has provided a new resource to support fire 

management decisions. 
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